
Bayesian and Predictive Analysis
DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D.
April 30, 2025

What was the most important thing you
learned during this class?

What important question remains
unanswered for you?

One Minute Paper Results

2 / 58

Bayesian Analysis

Kruschke's videos are an excelent introduction to Bayesian
Analysis https://www.youtube.com/watch?v=YyohWpjl6KU!

Doing Bayesian Data Analysis, Second Edition: A Tutorial with
R, JAGS, and Stan

The Theory That Would Not Die: How Bayes' Rule Cracked the
Enigma Code, Hunted Down Russian Submarines, and
Emerged Triumphant from Two Centuries of Controversy by
Sharon Bertsch McGrayne

Video series by Rasmus Baath Part 1, Part 2, Part 3

Billiards with Fred the Frequentist and Bayer the Bayesian

3 / 58

https://www.youtube.com/watch?v=YyohWpjl6KU
http://www.amazon.com/Doing-Bayesian-Data-Analysis-Second/dp/0124058884/ref=sr_1_1?ie=UTF8&qid=1437688316&sr=8-1&keywords=Kruschke
http://www.amazon.com/Doing-Bayesian-Data-Analysis-Second/dp/0124058884/ref=sr_1_1?ie=UTF8&qid=1437688316&sr=8-1&keywords=Kruschke
https://www.youtube.com/watch?v=3OJEae7Qb_o&app=desktop
https://www.youtube.com/watch?v=mAUwjSo5TJE
https://www.youtube.com/watch?v=Ie-6H_r7I5A
https://towardsdatascience.com/billiards-with-fred-the-frequentist-and-bayer-the-bayesian-bayer-wins-7bc95b24a7ef

Bayes Theorem

Consider the following data from a cancer test:

1% of women have breast cancer (and therefore 99% do not).
80% of mammograms detect breast cancer when it is there (and therefore 20% miss it).
9.6% of mammograms detect breast cancer when it's not there (and therefore 90.4% correctly return a negative result).

 Cancer (1%) No Cancer (99%)

Test postive 80% 9.6%

Test negative 20% 90.4%

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|A
′

)P(A
′

)

4 / 58

How accurate is the test?

Now suppose you get a positive test result. What are the chances you have cancer?
80%? 99%? 1%?

Ok, we got a positive result. It means we're somewhere in the top row of our table. Let's not assume anything - it could be
a true positive or a false positive.
The chances of a true positive = chance you have cancer chance test caught it = 1% 80% = .008
The chances of a false positive = chance you don't have cancer chance test caught it anyway = 99% 9.6% = 0.09504

 Cancer (1%) No Cancer (99%)

Test postive True +: 1% * 80% False +: 99% * 9.6% 10.304%

Test negative False -: 1% * 20% True -: 99% * 90.4% 89.696%

5 / 58

How accurate is the test?

The chance of getting a real, positive result is .008. The chance of getting any type of positive
result is the chance of a true positive plus the chance of a false positive (.008 + 0.09504 = .10304).

So, our chance of cancer is .008/.10304 = 0.0776, or about 7.8%.

Probability =
desired event

all possibilities

P(C|P) = = ≈ .078
P(P |C)P(C)

P(P)

.8 ∗ .01

.008 + 0.095

6 / 58

Bayes Formula

It all comes down to the chance of a true positive result divided by the chance of any positive
result. We can simplify the equation to:

P (A|B) =
P (B|A)P (A)

P (B)

7 / 58

8 / 58

How many fish are in the lake?
Catch them all, count them. Not practical (or even possible)!
We can sample some fish.

Our strategy:

1. Catch some fish.
2. Mark them.
3. Return the fish to the pond. Let them get mixed up (i.e. wait a while).
4. Catch some more fish.
5. Count how many are marked.

For example, we initially caught 20 fish, marked them, returned them to the pond. We then
caught another 20 fish and 5 of them were marked (i.e they were caught the first time).

Adopted from Rasmath Bääth useR! 2015 workshop: http://www.sumsar.net/files/academia/user_2015_tutorial_bayesian_data_analysis_short_version.pdf

9 / 58

Strategy for fitting a model

Step 1: Define Prior Distribution. Draw a lot of random samples from the "prior" probability
distribution on the parameters.

n_draw <- 100000

n_fish <- sample(20:250, n_draw, replace = TRUE)

head(n_fish, n=10)

[1] 233 94 234 138 250 25 222 165 218 156

hist(n_fish, main="Prior Distribution")

10 / 58

Strategy for fitting a model

Step 2: Plug in each draw into the generative model which generates "fake" data.

pick_fish <- function(n_fish) { # The generative model

 fish <- rep(0:1, c(n_fish - 20, 20))

 sum(sample(fish, 20))

}

n_marked <- rep(NA, n_draw)

for(i in 1:n_draw) {

 n_marked[i] <- pick_fish(n_fish[i])

}

head(n_marked, n=10)

[1] 1 5 1 3 0 15 1 2 1 5

11 / 58

Strategy for fitting a model

Step 3: Keep only those parameter values that generated the data that was actually observed (in
this case, 5).

post_fish <- n_fish[n_marked == 5]

hist(post_fish, main='Posterior Distribution')

abline(v=median(post_fish), col='red')

abline(v=quantile(post_fish, probs=c(.25, .75)), col='green')

12 / 58

What if we have better prior information?

An "expert" believes there are around 200 fish in the pond. Insteand of a uniform distribution, we
can use a binomial distribution to define our "prior" distribution.

n_fish <- rnbinom(n_draw, mu = 200 - 20, size = 4) + 20

hist(n_fish, main='Prior Distribution')

13 / 58

What if we have better prior information?
n_marked <- rep(NA, n_draw)

for(i in 1:n_draw) {

 n_marked[i] <- pick_fish(n_fish[i])

}

post_fish <- n_fish[n_marked == 5]

hist(post_fish, main='Posterior Distribution')

abline(v=median(post_fish), col='red')

abline(v=quantile(post_fish, probs=c(.25, .75)), col='green')

14 / 58

Bayes Billiards Balls

Consider a pool table of length one. An 8-ball is thrown such that the likelihood of its stopping
point is uniform across the entire table (i.e. the table is perfectly level). The location of the 8-ball
is recorded, but not known to the observer. Subsequent balls are thrown one at a time and all
that is reported is whether the ball stopped to the left or right of the 8-ball. Given only this
information, what is the position of the 8-ball? How does the estimate change as more balls are
thrown and recorded?

DATA606::shiny_demo('BayesBilliards', package='DATA606')

See also: http://www.bryer.org/post/2016-02-21-bayes_billiards_shiny/

15 / 58

http://www.bryer.org/post/2016-02-21-bayes_billiards_shiny/

Predictive Modeling

16 / 58

Example: Hours Studying Predicting Passing
study <- data.frame(

 Hours=c(0.50,0.75,1.00,1.25,1.50,1.75,1.75,2.00,2.25,2.50,2.75,3.00,

3.25,3.50,4.00,4.25,4.50,4.75,5.00,5.50),

 Pass=c(0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1)

)

study[sample(nrow(study), 5),]

Hours Pass

12 3.00 0

5 1.50 0

11 2.75 1

18 4.75 1

10 2.50 0

tab <- describeBy(study$Hours, group = study$Pass, mat = TRUE, skew = FALSE)

tab$group1 <- as.integer(as.character(tab$group1))

17 / 58

Prediction

Odds (or probability) of passing if studied zero hours?

Odds (or probability) of passing if studied 4 hours?

log() = −4.078 + 1.505 × 0
p

1 − p

= exp(−4.078) = 0.0169
p

1 − p

p = = .016
0.0169

1.169

log() = −4.078 + 1.505 × 4
p

1 − p

= exp(1.942) = 6.97
p

1 − p 18 / 58

Fitted Values
study[1,]

Hours Pass

1 0.5 0

logistic <- function(x, b0, b1) {

return(1 / (1 + exp(-1 * (b0 + b1 * x))))

}

logistic(.5, b0=-4.078, b1=1.505)

[1] 0.03470667

19 / 58

Model Performance

The use of statistical models to predict outcomes, typically on new data, is called predictive
modeling. Logistic regression is a common statistical procedure used for prediction. We will
utilize a confusion matrix to evaluate accuracy of the predictions.

20 / 58

Predicting Heart Attacks
Source: https://www.kaggle.com/datasets/imnikhilanand/heart-attack-prediction?select=data.csv

heart <- read.csv('../course_data/heart_attack_predictions.csv')

heart <- heart |>

 mutate_if(is.character, as.numeric) |>

 select(!c(slope, ca, thal))

str(heart)

'data.frame': 294 obs. of 11 variables:

$ age : int 28 29 29 30 31 32 32 32 33 34 ...

$ sex : int 1 1 1 0 0 0 1 1 1 0 ...

$ cp : int 2 2 2 1 2 2 2 2 3 2 ...

$ trestbps: num 130 120 140 170 100 105 110 125 120 130 ...

$ chol : num 132 243 NA 237 219 198 225 254 298 161 ...

$ fbs : num 0 0 0 0 0 0 0 0 0 0 ...

$ restecg : num 2 0 0 1 1 0 0 0 0 0 ...

$ thalach : num 185 160 170 170 150 165 184 155 185 190 ...

$ exang : num 0 0 0 0 0 0 0 0 0 0 ...

$ oldpeak : num 0 0 0 0 0 0 0 0 0 0 ...

$ num : int 0 0 0 0 0 0 0 0 0 0 ...

Note: num is the diagnosis of heart disease (angiographic disease status) (i.e. Value 0: < 50% diameter narrowing --
Value 1: > 50% diameter narrowing)

21 / 58

https://www.kaggle.com/datasets/imnikhilanand/heart-attack-prediction?select=data.csv

Missing Data

We will save this for another day...

complete.cases(heart) |> table()

FALSE TRUE

33 261

mice_out <- mice::mice(heart, m = 1)

iter imp variable

1 1 trestbps chol fbs restecg thalach exang

2 1 trestbps chol fbs restecg thalach exang

3 1 trestbps chol fbs restecg thalach exang

4 1 trestbps chol fbs restecg thalach exang

5 1 trestbps chol fbs restecg thalach exang

heart <- mice::complete(mice_out)

22 / 58

Data Setup

We will split the data into a training set (70% of observations) and validation set (30%).

train.rows <- sample(nrow(heart), nrow(heart) * .7)

heart_train <- heart[train.rows,]

heart_test <- heart[-train.rows,]

This is the proportions of survivors and defines what our "guessing" rate is. That is, if we guessed
no one had a heart attack, we would be correct 62% of the time.

(heart_attack <- table(heart_train$num) %>% prop.table)

0 1

0.6341463 0.3658537

23 / 58

Model Training
lr.out <- glm(num ~ ., data=heart_train, family=binomial(link = 'logit'))

summary(lr.out)

Call:

glm(formula = num ~ ., family = binomial(link = "logit"), data = heart_train)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.411222 3.354052 -2.210 0.027131 *

age 0.006097 0.031515 0.193 0.846584

sex 1.487602 0.547228 2.718 0.006559 **

cp 0.997312 0.256496 3.888 0.000101 ***

trestbps -0.000568 0.013147 -0.043 0.965539

chol 0.005927 0.003501 1.693 0.090438 .

fbs 1.835570 0.824286 2.227 0.025957 *

restecg -0.093726 0.489456 -0.191 0.848141

thalach -0.001827 0.010879 -0.168 0.866596

exang 1.359498 0.550205 2.471 0.013478 *

oldpeak 1.167187 0.320889 3.637 0.000275 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 269.25 on 204 degrees of freedom

Residual deviance: 147.33 on 194 degrees of freedom

AIC: 169.33

##

24 / 58

Predicted Values
heart_train$prediction <- predict(lr.out, type = 'response', newdata = heart_train)

ggplot(heart_train, aes(x = prediction, color = num == 1)) + geom_density()

25 / 58

Results
heart_train$prediction_class <- heart_train$prediction > 0.5

tab <- table(heart_train$prediction_class,

 heart_train$num) %>% prop.table() %>% print()

0 1

FALSE 0.58536585 0.09756098

TRUE 0.04878049 0.26829268

For the training set, the overall accuracy is 85.37%. Recall that 63.41% people did not have a heart
attach. Therefore, the simplest model would be to predict that no one had a heart attack, which
would mean we would be correct 63.41% of the time. Therefore, our prediction model is 21.95%
better than guessing.

26 / 58

Checking with the validation dataset
(survived_test <- table(heart_test$num) %>% prop.table())

0 1

0.6516854 0.3483146

heart_test$prediction <- predict(lr.out, newdata = heart_test, type = 'response')

heart_test$prediciton_class <- heart_test$prediction > 0.5

tab_test <- table(heart_test$prediciton_class, heart_test$num) %>%

 prop.table() %>% print()

0 1

FALSE 0.53932584 0.04494382

TRUE 0.11235955 0.30337079

The overall accuracy is 84.27%, or 19.1% better than guessing.

27 / 58

In a classification model, outcomes are either as
positive (p) or negative (n). There are then four
possible outcomes:

true positive (TP) The outcome from a prediction is p and
the actual value is also p.
false positive (FP) The actual value is n.
true negative (TN) Both the prediction outcome and the
actual value are n.
false negative (FN) The prediction outcome is n while the
actual value is p.

roc <- calculate_roc(heart_train$prediction,

 heart_train$num == 1)

summary(roc)

AUC = 0.903

Cost of false-positive = 1

Cost of false-negative = 1

Threshold with minimum cost = 0.515

Receiver Operating Characteristic (ROC) Curve
The ROC curve is created by plotting the true positive rate (TPR; AKA sensitivity) against the false positive
rate (FPR; AKA probability of false alarm) at various threshold settings.

28 / 58

ROC Curve

29 / 58

ROC Curve
plot(roc, curve = 'accuracy')

30 / 58

ROC Curve
plot(roc)

31 / 58

Caution on Interpreting Accuracy
Loh, Sooo, and Zing (2016) predicted sexual orientation based on Facebook Status.

They reported model accuracies of approximately 90% using SVM, logistic regression and/or random
forest methods.

Gallup (2018) poll estimates that 4.5% of the Americal population identifies as LGBT.

My proposed model: I predict all Americans are heterosexual.

The accuracy of my model is 95.5%, or 5.5% better than Facebook's model!

Predicting "rare" events (i.e. when the proportion of one of the two outcomes large) is difficult and
requires independent (predictor) variables that strongly associated with the dependent (outcome)
variable.

32 / 58

http://cs229.stanford.edu/proj2016/report/LohSooXing-PredictingSexualOrientationBasedOnFacebookStatusUpdates-report.pdf
https://news.gallup.com/poll/234863/estimate-lgbt-population-rises.aspx

Fitted Values Revisited

What happens when the ratio of true-to-false increases (i.e. want to predict "rare" events)?

Let's simulate a dataset where the ratio of true-to-false is 10-to-1. We can also define the
distribution of the dependent variable. Here, there is moderate separation in the distributions.

test.df2 <- getSimulatedData(

 treat.mean=.6, control.mean=.4)

The multilevelPSA::psrange function will sample with varying ratios from 1:10 to 1:1. It takes
multiple samples and averages the ranges and distributions of the fitted values from logistic
regression.

psranges2 <- psrange(test.df2, test.df2$treat, treat ~ .,

 samples=seq(100,1000,by=100), nboot=20)

33 / 58

Fitted Values Revisited (cont.)
plot(psranges2)

34 / 58

1. What was the most important thing
you learned during this class?

2. What important question remains
unanswered for you?

One Minute Paper

https://forms.gle/ETg8tW9YRHQJHjE28

35 / 58

https://forms.gle/ETg8tW9YRHQJHjE28

BONUS: Classification and Regression Trees

36 / 58

Classification and Regression Trees

The goal of CART methods is to find best predictor in X of some outcome, y. CART methods do
this recursively using the following procedures:

Find the best predictor in X for y.
Split the data into two based upon that predictor.
Repeat 1 and 2 with the split data sets until a stopping criteria has been reached.

There are a number of possible stopping criteria including: Only one data point remains.

All data points have the same outcome value.
No predictor can be found that sufficiently splits the data.

37 / 58

Consider the scatter plot to the right with the
following characteristics:

Binary outcome, G, coded “A” or “B”.
Two predictors, x and z
The vertical line at z = 3 creates the first partition.
The double horizontal line at x = -4 creates the second
partition.
The triple horizontal line at x = 6 creates the third
partition.

Recursive Partitioning Logic of CART

38 / 58

The root node contains the full data set.
The data are split into two mutually exclusive pieces.
Cases where x > ci go to the right, cases where x <= ci
go to the left.
Those that go to the left reach a terminal node.
Those on the right are split into two mutually exclusive
pieces. Cases where z > c2 go to the right and terminal
node 3; cases where z <= c2 go to the left and terminal
node 2.

Tree Structure

39 / 58

Sum of Squared Errors

The sum of squared errors for a tree T is:

Where, , the prediction for leaf \textit{c}.

Or, alternatively written as:

Where is the within-leave variance of leaf \textit{c}.

Our goal then is to find splits that minimize S.

S = ∑
c∈leaves(T)

∑
i∈c

(y − mc)
2

mc = ∑i∈c yi
1
n

S = ∑
c∈leaves(T)

ncVc

Vc

40 / 58

Advantages of CART Methods

Making predictions is fast.

It is easy to understand what variables are important in making predictions.

Trees can be grown with data containing missingness. For rows where we cannot reach a leaf
node, we can still make a prediction by averaging the leaves in the sub-tree we do reach.

The resulting model will inherently include interaction effects. There are many reliable
algorithms available.

41 / 58

Regression Trees

In this example we will predict the median California house price from the house’s longitude and
latitude.

str(calif)

'data.frame': 20640 obs. of 10 variables:

$ MedianHouseValue: num 452600 358500 352100 341300 342200 ...

$ MedianIncome : num 8.33 8.3 7.26 5.64 3.85 ...

$ MedianHouseAge : num 41 21 52 52 52 52 52 52 42 52 ...

$ TotalRooms : num 880 7099 1467 1274 1627 ...

$ TotalBedrooms : num 129 1106 190 235 280 ...

$ Population : num 322 2401 496 558 565 ...

$ Households : num 126 1138 177 219 259 ...

$ Latitude : num 37.9 37.9 37.9 37.9 37.9 ...

$ Longitude : num -122 -122 -122 -122 -122 ...

$ cut.prices : Factor w/ 4 levels "[1.5e+04,1.2e+05]",..: 4 4 4 4 4 4 4 3 3 3 ...

42 / 58

Tree 1
treefit <- tree(log(MedianHouseValue) ~ Longitude + Latitude, data=calif)

plot(treefit); text(treefit, cex=0.75)

43 / 58

Tree 1

44 / 58

Tree 1
summary(treefit)

Regression tree:

tree(formula = log(MedianHouseValue) ~ Longitude + Latitude,

data = calif)

Number of terminal nodes: 12

Residual mean deviance: 0.1662 = 3429 / 20630

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.75900 -0.26080 -0.01359 0.00000 0.26310 1.84100

Here “deviance” is the mean squared error, or root-mean-square error of .√.166 = 0.41

45 / 58

Tree 2, Reduce Minimum Deviance

We can increase the fit but changing the stopping criteria with the mindev parameter.

treefit2 <- tree(log(MedianHouseValue) ~ Longitude + Latitude, data=calif, mindev=.001)

summary(treefit2)

Regression tree:

tree(formula = log(MedianHouseValue) ~ Longitude + Latitude,

data = calif, mindev = 0.001)

Number of terminal nodes: 68

Residual mean deviance: 0.1052 = 2164 / 20570

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.94700 -0.19790 -0.01872 0.00000 0.19970 1.60600

With the larger tree we now have a root-mean-square error of 0.32.

46 / 58

Tree 2, Reduce Minimum Deviance

47 / 58

Tree 3, Include All Variables

However, we can get a better fitting model by including the other variables.

treefit3 <- tree(log(MedianHouseValue) ~ ., data=calif)

summary(treefit3)

Regression tree:

tree(formula = log(MedianHouseValue) ~ ., data = calif)

Variables actually used in tree construction:

[1] "cut.prices"

Number of terminal nodes: 4

Residual mean deviance: 0.03608 = 744.5 / 20640

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.718000 -0.127300 0.009245 0.000000 0.130000 0.358600

With all the available variables, the root-mean-square error is 0.11.

48 / 58

Classification Trees

Predicting who survived the Titanic.

pclass : Passenger class (1 = 1st; 2 = 2nd; 3 = 3rd)
survival : A Boolean indicating whether the passenger survived or not (0 = No; 1 = Yes); this is our target
name : A field rich in information as it contains title and family names
sex : male/female
age : Age, a significant portion of values are missing
sibsp : Number of siblings/spouses aboard
parch : Number of parents/children aboard
ticket : Ticket number.
fare : Passenger fare (British Pound).
cabin : Does the location of the cabin influence chances of survival?
embarked : Port of embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)
boat : Lifeboat, many missing values
body : Body Identification Number
home.dest : Home/destination

49 / 58

Classification using rpart
(titanic.rpart <- rpart(survived ~ pclass + sex + age + sibsp,

 data=titanic.train))

n= 981

node), split, n, deviance, yval

* denotes terminal node

1) root 981 231.651400 0.3822630

2) sex=male 627 95.792660 0.1881978

4) pclass>=1.5 488 57.801230 0.1372951

8) age>=3.5 470 48.563830 0.1170213 *

9) age< 3.5 18 4.000000 0.6666667 *

5) pclass< 1.5 139 32.287770 0.3669065 *

3) sex=female 354 70.420900 0.7259887

6) pclass>=2.5 164 40.993900 0.4939024

12) sibsp>=2.5 18 1.777778 0.1111111 *

13) sibsp< 2.5 146 36.253420 0.5410959 *

7) pclass< 2.5 190 12.968420 0.9263158 *

50 / 58

Classification using rpart
plot(titanic.rpart); text(titanic.rpart, use.n=TRUE, cex=1)

51 / 58

Classification using ctree
(titanic.ctree <- ctree(survived ~ pclass + sex + age + sibsp, data=titanic.train))

Conditional inference tree with 7 terminal nodes

Response: survived

Inputs: pclass, sex, age, sibsp

Number of observations: 981

1) sex == {female}; criterion = 1, statistic = 276.834

2) pclass <= 2; criterion = 1, statistic = 77.749

3)* weights = 190

2) pclass > 2

4) sibsp <= 2; criterion = 0.987, statistic = 8.716

5) age <= 22; criterion = 0.976, statistic = 7.505

6)* weights = 78

5) age > 22

7)* weights = 68

4) sibsp > 2

8)* weights = 18

1) sex == {male}

9) pclass <= 1; criterion = 1, statistic = 34.187

10)* weights = 139
52 / 58

Classification using ctree
plot(titanic.ctree)

53 / 58

Ensemble Methods

Ensemble methods use multiple models that are combined by weighting, or averaging, each
individual model to provide an overall estimate. Each model is a random sample of the sample.
Common ensemble methods include:

Boosting - Each successive trees give extra weight to points incorrectly predicted by earlier
trees. After all trees have been estimated, the prediction is determined by a weighted “vote”
of all predictions (i.e. results of each individual tree model).

Bagging - Each tree is estimated independent of other trees. A simple “majority vote” is take
for the prediction.

Random Forests - In addition to randomly sampling the data for each model, each split is
selected from a random subset of all predictors.

Super Learner - An ensemble of ensembles. See https://cran.r-
project.org/web/packages/SuperLearner/vignettes/Guide-to-SuperLearner.html 54 / 58

https://cran.r-project.org/web/packages/SuperLearner/vignettes/Guide-to-SuperLearner.html
https://cran.r-project.org/web/packages/SuperLearner/vignettes/Guide-to-SuperLearner.html

Random Forests
The random forest algorithm works as follows:

1. Draw bootstrap samples from the original data.

2. For each bootstrap sample, grow an unpruned tree. At each node, randomly sample predictors
and choose the best split among those predictors selectedBagging is a special case of random
forests where where p is the number of predictors.

3. Predict new data by aggregating the predictions of the ntree trees (majority votes for classification,
average for regression).

Error rates are obtained as follows:

1. At each bootstrap iteration predict data not in the bootstrap sample (what Breiman calls “out-of-
bag”, or OOB, data) using the tree grown with the bootstrap sample.

2. Aggregate the OOB predictions. On average, each data point would be out-of-bag 36% of the times,
so aggregate these predictions. The calculated error rate is called the OOB estimate of the error rate.

ntree

mtry

mtry = p

55 / 58

Random Forests: Titanic
titanic.rf <- randomForest(factor(survived) ~ pclass + sex + age + sibsp,

 data = titanic.train,

 ntree = 5000,

 importance = TRUE)

importance(titanic.rf)

0 1 MeanDecreaseAccuracy MeanDecreaseGini

pclass 87.70927 115.46598 127.50822 50.56644

sex 212.69670 306.52265 289.46247 125.67778

age 89.83804 56.48383 115.48253 56.14144

sibsp 73.43383 -10.36146 56.90253 16.85598

56 / 58

Random Forests: Titanic (cont.)
importance(titanic.rf)

0 1 MeanDecreaseAccuracy MeanDecreaseGini

pclass 87.70927 115.46598 127.50822 50.56644

sex 212.69670 306.52265 289.46247 125.67778

age 89.83804 56.48383 115.48253 56.14144

sibsp 73.43383 -10.36146 56.90253 16.85598

57 / 58

Random Forests: Titanic
min_depth_frame <- min_depth_distribution(titanic.rf)

plot_min_depth_distribution(min_depth_frame)

58 / 58

