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« Available on March 12th.

Due March 16th (by midnight).

Covers chapters 1 through 5.

20 multiple choice questions.

You may use your notes, textbook, and course site. Do not consult with anyone else.
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One Minute Paper Results

What was the most important thing you
learned during this class?
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What important question remains
unanswered for you?
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Crash Course in Calculus




Crash Course in Calculus

There are three major concepts in calculus that will be helpful to understand:

Limits - the value that a function (or sequence) approaches as the input (or index) approaches some
value.

Derivatives - the slope of the line tangent at any given point on a function.

i)

Integrals - the area under the curve.
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Derivatives

Source: @allison_horst
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https://github.com/allisonhorst/stats-illustrations

Derivatives

Source: @allison_horst
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https://github.com/allisonhorst/stats-illustrations

Derivatives

Source: @allison_horst



https://github.com/allisonhorst/stats-illustrations
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https://github.com/allisonhorst/stats-illustrations

Derivatives

Source: @allison_horst

10 / 63


https://github.com/allisonhorst/stats-illustrations
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Derivatives

Source: @allison_horst
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https://github.com/allisonhorst/stats-illustrations

Derivatives

Source: @allison_horst
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https://github.com/allisonhorst/stats-illustrations

Derivatives

Source: @allison_horst

The expression for

‘\?'\e/ mS{-_\'aw\'anequi IS FOUND BY:

Slope ar an o\ N -

OY‘PO‘ function, aka (Dgr\odr‘;\ssi?;;\ for the

the derlva+|ve g\ope between 2 Poirﬁ-s
\¥ Se\oarad'ed by Ax...

—
94_1_[ _ im o &)
AX->0 AX

OX ——

@% eva\uah’ng that
slope as +he Po'|n+§
gef mﬁ'ni’rely close

‘|‘09€+\f\€x

14 [ 63


https://github.com/allisonhorst/stats-illustrations

Function for Normal Distribution

f(w|,u,a) — U\/ZTe 20?2

f <- function(x, mean = 0, sigma = 1) {
1/ (sigma x sqrt(2  pi)) * exp(l)*(-1/2 x» ( (x - mean) / sigma )"2)
}

min <- 0; max <- 2
ggplot() + stat_function(fun = f) + xlim(c(-4, 4)) +
geom_vline(xintercept = c(min, max), color = 'blue', linetype = 2) + xlab('x")
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Reimann Sums

One strategy to find the area between two values is to draw a series of rectangles. Given n
rectangles, we know that the width of each Is % and the height is f(x). Here is an example

with 3 rectangles.

Area = (.58826694

D4 -

D3~
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Reimann Sums (10 rectangles)

Area = 0.51138534
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Reimann Sums (30 rectangles)

Area = 0.48870834
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Reimann Sums (300 rectangles)

Area = 0.47839934
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n — o0

As n approaches infinity we are going to get the exact value for the area under the curve. This
notion of letting a value get increasingly close to infinity, zero, or any other value, Is called the
limit.

The area under a function is called the integral.
integrate(f, 0, 2)
## 0.4772499 with absolute error < 5.3e-15

DATA606: :shiny_demo('calculus')
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Normal Distribution

normal_plot(cv = c(0, 2))

PFi0=x<2)=0477

pnorm(2) - pnorm(0)

## [1] 0.4772499

21/ 63



R's built in functions for working with distributions
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https://github.com/jbryer/DATA606Fall2021/blob/master/R/distributions.R
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Population Distribution (Uniform)

n <- 1le5
pop <- runif(n, 0, 1)
mean (pop)

## [1] 0.5010704

Population Distribution

1.5

Density
1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0
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Random Sample (n=10)

sampl <- sample(pop, size=10)
mean (sampl)

## [1] 0.4482797

hist(sampl)

Histogram of samp1

Frequency
2
1

0.0 0.2 0.4 0.6 0.8 1.0
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Random Sample (n=30)

samp2 <- sample(pop, size=30)
mean (samp2)

## [1] 0.4058648

hist(samp2)

Histogram of samp2

Frequency

0.0 02 0.4 0.6 0.8
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Lots of Random Samples

M <- 1000
samples <- numeric(length=M)
for(i in seq_len(M)) {
samples[i] <- mean(sample(pop, size=30))
}
head (samples, n=8)

## [1] 0.4391009 0.4473305 0.4953015 0.4737595 0.5114542 0.5063670 0.4953730
## [8] 0.5653253
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Sampling Distribution

hist(samples)

Histogram of samples
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Central Limit Theorem (CLT)

Let X1, X9, .., X,, be independent, identically distributed random variables with mean u and
variance o2, both finite. Then for any constant z,

P (5 <z) <o

where ® is the cumulative distribution function (cdf) of the standard normal distribution.
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In other words...

The distribution of the sample mean is well approximated by a normal model:

wwN(mean—,u,SE— \/n)

where SE represents the standard error, which is defined as the standard deviation of the
sampling distribution. In most cases o is not known, so use s.
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CLT Shiny App

library (DATA606)
shiny_demo('sampdist')
shiny_demo('CLT_mean')
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Standard Error

samp2 <- sample(pop, size=30)
mean (samp2)

## [1] 0.5009635

(samp2.se <- sd(samp2) / sqrt(length(samp2)))

## [1] 0.05086145
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Confidence Interval

The confidence interval is then u &= C'V X SE where CV is the critical value. For a 95%
confidence interval, the critical value is ~1.96 since

196 1 _(m—,u)z
/ ———d 22 ~0.95
~1.96 O/ 2T

gnorm(0.025) # Remember we need to consider the two tails, 2.5% to the left, 2.5% to the right.

## [1] -1.959964

(samp2.ci <- c(mean(samp2) - 1.96 * samp2.se, mean(samp2) + 1.96 * samp2.se))

## [1] 0.4012751 0.6006520
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Confidence Intervals (cont.)

We are 95% confident that the true population mean is between 0.4012751, 0.600652.

That Is, If we were to take 100 random samples, we would expect at least 95% of those samples to
have a mean within 0.4012751, 0.600652.

ci <- data.frame(mean=numeric(), min=numeric(), max=numeric())
for(i in seq_len(100)) {
samp <- sample(pop, size=30)
se <- sd(samp) / sqrt(length(samp))
ci[i,] <- c(mean(samp),
mean(samp) - 1.96 * se,
mean(samp) + 1.96 * se)
+
ci$sample <- 1l:nrow(ci)
ci$sig <- ci$min < 0.5 & ci$max > 0.5
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Confidence Intervals

ggplot(ci, aes(x=min, xend=max, y=sample, yend=sample, color=sig)) +
geom_vline(xintercept=0.5) +
geom_segment() + xlab('CI') + ylab('') +
scale_color_manual(values=c('TRUE'="grey', 'FALSE'='red'))

sig
Bl = = FALEE
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Null Hypothesis Testing




Hypothesis Testing

. We start with a null hypothesis ( Hyp ) that represents the status quo.

. We also have an alternative hypothesis ( H 4 ) that represents our research question, i.e. what
we're testing for.

- We conduct a hypothesis test under the assumption that the null hypothesis is true, either
via simulation or traditional methods based on the central limit theorem.

. If the test results suggest that the data do not provide convincing evidence for the alternative

hypothesis, we stick with the null hypothesis. If they do, then we reject the null hypothesis in
favor of the alternative.
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Hypothesis Testing (using Cl)

Hy: The mean of samp2 = 0.5
H 4: The mean of samp2 # 0.5

Using confidence intervals, if the null value is within the confidence interval, then we fail to reject
the null hypothesis.

(samp2.ci <- c(mean(samp2) - 1.96 * sd(samp2) / sqrt(length(samp2)),
mean(samp2) + 1.96 * sd(samp2) / sqrt(length(samp2))))

## [1] 0.4012751 0.6006520

Since 0.5 fall within 0.4012751, 0.600652, we fail to reject the null hypothesis.
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Hypothesis Testing (using p-values)

2
r~ N (mean = 0.49,S5FE = _O ! )
V30 = 0.049

T — null 0.49 — 0.50
= = — —.204081
A o7 oYTG 04081633

pnorm(-.204) * 2

## [1] 0.8383535
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Hypothesis Testing (using p-values)

DATA606: :normal_plot(cv = c(.204), tails = 'two.sided')

Pix= -0.204 &x=0.204 )=0.838
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Type | and Il Errors

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

fail to reject H, rejectH
Hq true v Type | Error

Hp true  Type Il Error v

e Type | Error: Rejecting the null hypothesis when it is true.
e Type Il Error: Failing to reject the null hypothesis when it is false.
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Hypothesis Test

If we again think of a hypothesis test as a criminal trial then it makes sense to frame the verdict
In terms of the null and alternative hypotheses:

Hp : Defendant is innocent
Ha : Defendant is guilty

Which type of error is being committed in the following circumstances?
. Declaring the defendant innocent when they are actually guilty
Type 2 error

. Declaring the defendant guilty when they are actually innocent

Type 1 error

Which error do you think is the worse error to make? 4 | 63



Null Distribution

(cv <= gnorm(0.05, mean=0, sd=1, lower.tail=FALSE))

## [1] 1.644854

0.4
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Density
0.2

0.0
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Alternative Distribution
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pnorm(cv, mean=cv, lower.tail = FALSE)

## [1] 0.5
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Another Example (mu = 2.5)

mu <- 2.5

(cv <= gnorm(0.05, Null Distribution

mean=0, Z -
sd=1, @
lower.tail=FALSE)) 2 o |
=
8 -
s -
## [1] 1.644854 g . | | | | =._I_
-4 2 0 2 4

Yalues

Alternative Distribution

Density
00 01 02 03 04
|

Values
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Numeric Values

Type | Error
pnorm(mu, mean=0, sd=1, lower.tail=FALSE)

## [1] 0.006209665

Type Il Error

pnorm(cv, mean=mu, lower.tail = TRUE)

## [1] 0.1962351
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Shiny Application

Visualizing Type | and Type Il errors: https://bcdudek.net/betaprob/
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https://bcdudek.net/betaprob/

Why p < 0.05?

Check out this page: https://r.bryer.org/shiny/Why05/

See also:

Kelly M. Emily Dickinson and monkeys on the stair Or: What is the significance of the 5%
significance level? Significance 10:5. 2013.
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https://r.bryer.org/shiny/Why05/
http://www.acsu.buffalo.edu/~grant/5pcMarkKelley.pdf
http://www.acsu.buffalo.edu/~grant/5pcMarkKelley.pdf

Statistical vs. Practical Significance

. Real differences between the point estimate and null value are

, , p-VALWE  INTERPRETATION
easler to detect with larger samples.

0.001
- However, very large samples will result in statistical g:glz —HIGHLY SIGNIFICANT
significance even for tiny differences between the sample 0.05 |
mean and the null value (effect size), even when the difference 8839 —SIGNIFICANT
is not practically significant. 0.050 }— E?L&SHLETE)ENDSO

- o | 0.051 1 DN THE EDGE
« This Is especially important to research: if we conduct a study, 006 OF SIGNIFICANCE.

. . 07 ] ~
we want to focus on finding meaningful results (we want 823 g%%;c%?ﬁﬁ%
observed differences to be real, but also large enough to 0.09 P<o 10 LEVEL
00971 HeY, LOOK AT
i) >0.1 TS WIERESTING
SUBGROUP ANALYS1S

. The role of a statistician is not just in the analysis of data, but
also in planning and design of a study. ==
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Bootstrapping

. First introduced by Efron (1979) in Bootstrap Methods: Another Look at the Jackknife.
. Estimates confidence of statistics by resampling with replacement.
- The bootstrap sample provides an estimate of the sampling distribution.

- The boot R package provides a framework for doing bootstrapping:
https://www.statmethods.net/advstats/bootstrapping.html
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https://projecteuclid.org/euclid.aos/1176344552
https://www.statmethods.net/advstats/bootstrapping.html

Bootstrapping Example (Population)

Define our population with a uniform distribution.

n <- 1le5
pop <- runif(n, 0, 1)
mean (pop)

## [1] 0.5003764

Population Distribution

1.5

1.0

Density

0.5

0.0

0.0 0.2 0.4 0.6

0.8

1.0
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Bootstrapping Example (Sample)

We observe one random sample from the population.

sampl <- sample(pop, size = 50)

Distribution of Sample

2.0

Density
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Bootsrapping Example (Estimate)

boot.samples <- numeric(l000) # 1,000 bootstrap samples

for(i in seq_along(boot.samples)) {
tmp <- sample(sampl, size = length(sampl), replace = TRUE)
boot.samples[i] <- mean(tmp)

+
head (boot.samples)

## [1] 0.5378192 0.4737312 0.4407003 0.5207491 0.5206053 0.5507134
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Bootsrapping Example (Distribution)

d <- density(boot.samples)

h <- hist(boot.samples, plot=FALSE)

hist(boot.samples, main='Bootstrap Distribution', xlab="", freq=FALSE,
ylim=c(0, max(dS$y, hS$density)+.5), col=COL[1,2], border = "white",
cex.main = 1.5, cex.axis = 1.5, cex.lab = 1.5)

lines(d, lwd=3)

Bootstrap Distribution

10

Density

I
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95% confidence interval

c(mean(boot.samples) - 1.96 * sd(boot.samples),
mean (boot.samples) + 1.96 * sd(boot.samples))

## [1] 0.4263515 0.5875345
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Bootstrapping is not just for means!

boot.samples.median <- numeric(1000) # 1,000 bootstrap samples
for(i in seq_along(boot.samples.median)) {

tmp <- sample(sampl, size = length(sampl), replace = TRUE)

boot.samples.median[i] <- median(tmp) # NOTICE WE ARE NOW USING THE median FUNCTION!
}

head (boot.samples.median)

## [1] 0.5553376 0.3771315 0.3652354 0.5718647 0.6019827 0.5718647

95% confidence interval for the median

c(mean(boot.samples.median) - 1.96 * sd(boot.samples.median),
mean (boot.samples.median) + 1.96 * sd(boot.samples.median))

## [1] 0.3224172 0.6498481
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Review: Sampling Distribution

Distribution of Population (in black)
FPopulation mean = 2 496 sample n = 30
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Review: Sampling Distribution

Distribution of Population (in black), Sample (in blug)
FPopulation mean = 2 496 sample n = 30
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Review: Sampling Distribution

Distribution of Population (in black), Sample (in blue), and Sampling Distribution (in maroon)
FPopulation mean = 2 496 sample n = 30
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Review: Add Bootstrap Distribution

Distribution of Population (in black), Sample (in blue), and Sampling Distribution (in maroon)
FPopulation mean = 2 496 sample n = 30

62/ 63



One Minute Paper

1. What was the most important thing
you learned during this class?
2. What important question remains

=]y [m]

unanswered for you?

[=]

https://forms.gle/ETg8tW9OYRHQJH|E28
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