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What was the most important thing you
learned during this class?

What important question remains
unanswered for you?

One Minute Paper Results
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Coin Tosses Revisited
coins <- sample(c(-1,1), 100, replace=TRUE)

plot(1:length(coins), cumsum(coins), type='l')

abline(h=0)
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Many Random Samples

samples <- rep(NA, 1000)

for(i in seq_along(samples)) {

    coins <- sample(c(-1,1), 100, replace=TRUE)

    samples[i] <- cumsum(coins)[length(coins)]

}

head(samples, n = 15)

##  [1] -4 -6 -4 -8  4 22  8 -6  8  8 -4 -4  2 -4 -4
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Histogram of Many Random Samples
hist(samples)
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Properties of Distribution
(m.sam <- mean(samples))

## [1] 0.188

(s.sam <- sd(samples))

## [1] 10.08853
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Properties of Distribution (cont.)
within1sd <- samples[samples >= m.sam - s.sam & samples <= m.sam + s.sam]

length(within1sd) / length(samples)

## [1] 0.68

within2sd <- samples[samples >= m.sam - 2 * s.sam & samples <= m.sam + 2* s.sam]

length(within2sd) / length(samples)

## [1] 0.953

within3sd <- samples[samples >= m.sam - 3 * s.sam & samples <= m.sam + 3 * s.sam]

length(within3sd) / length(samples)

## [1] 0.999
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Standard Normal Distribution

x <- seq(-4,4,length=200); y <- dnorm(x,mean=0, sd=1)

plot(x, y, type = "l", lwd = 2, xlim = c(-3.5,3.5), ylab='', xlab='z-score', yaxt='n')

f (x|μ,σ) = e
−1

σ√2π

(x−μ)2

2σ2
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Standard Normal Distribution
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Standard Normal Distribution
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Standard Normal Distribution
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What's the likelihood of ending with less than 15?
pnorm(15, mean=mean(samples), sd=sd(samples))

## [1] 0.9289753
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What's the likelihood of ending with more than 15?
1 - pnorm(15, mean=mean(samples), sd=sd(samples))

## [1] 0.07102468
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Z-Scores

Z-scores are often called standard scores:

Z-Scores have a mean = 0 and standard deviation = 1.

Converting Pam and Jim's scores to z-scores:

Comparing Scores on Different Scales

SAT scores are distributed nearly normally with mean 1500 and standard deviation 300. ACT
scores are distributed nearly normally with mean 21 and standard deviation 5. A college
admissions of�cer wants to determine which of the two applicants scored better on their
standardized test with respect to the other test takers: Pam, who earned an 1800 on her SAT, or
Jim, who scored a 24 on his ACT?

Z =
observation − mean

SD

ZPam = = 1
1800 − 1500

300

ZJim = = 0.6
24 − 21

5
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Dual Scales

Some problems1:

The designer has to make choices about scales and this can have a big impact on the viewer
"Cross-over points” where one series cross another are results of the design choices, not intrinsic to the data, and viewers
(particularly unsophisticated viewers)
They make it easier to lazily associate correlation with causation, not taking into account autocorrelation and other time-series
issues
Because of the issues above, in malicious hands they make it possible to deliberately mislead

This example looks at the relationship between NZ dollar exchange rate and trade weighted index.

DATA606::shiny_demo('DualScales', package='DATA606')

My advise:

Avoid using them. You can usually do better with other plot types.
When necessary (or compelled) to use them, rescale (using z-scores, we'll discuss this in a few weeks)

1 http://blog.revolutionanalytics.com/2016/08/dual-axis-time-series.html
2 http://ellisp.github.io/blog/2016/08/18/dualaxes 15 / 35

http://blog.revolutionanalytics.com/2016/08/dual-axis-time-series.html
http://ellisp.github.io/blog/2016/08/18/dualaxes


Normal Distribution Parameters
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SAT Variability

SAT scores are distributed nearly normally with mean 1500 and standard deviation 300.

68% of students score between 1200 and 1800 on the SAT.

95% of students score between 900 and 2100 on the SAT.

99.7% of students score between 600 and 2400 on the SAT.
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Evaluating Normal Approximation

To use the 68-95-99 rule, we must verify the normality assumption. We will want to do this also
later when we talk about various (parametric) modeling. Consider a sample of 100 male heights
(in inches).
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Evaluating Normal Approximation

Histogram looks normal, but we can overlay a standard normal curve to help evaluation.
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Data are plotted on the y-axis of a normal
probability plot, and theoretical quantiles
(following a normal distribution) on the x-
axis.
If there is a linear relationship in the plot,
then the data follow a nearly normal
distribution.
Constructing a normal probability plot
requires calculating percentiles and
corresponding z-scores for each observation,
which is tedious. Therefore we generally rely
on software when making these plots.

Normal Q-Q Plot
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Skewness
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Simulated Normal Q-Q Plots
DATA606::qqnormsim(heights)
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Stanley Milgram conducted a series
of experiments on obedience to
authority starting in 1963.
Experimenter (E) orders the teacher
(T), the subject of the experiment,
to give severe electric shocks to a
learner (L) each time the learner
answers a question incorrectly.

Milgram Experiment
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Milgram Experiment (cont.)

The learner is actually an actor, and the electric shocks are not real, but a prerecorded
sound is played each time the teacher administers an electric shock.
These experiments measured the willingness of study participants to obey an authority
�gure who instructed them to perform acts that con�icted with their personal
conscience.
Milgram found that about 65% of people would obey authority and give such shocks.
Over the years, additional research suggested this number is approximately consistent
across communities and time.
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Bernoulli Sequences
Each person in Milgram’s experiment can be thought of as a trial.
A person is labeled a success if she refuses to administer a severe shock, and failure if she administers such shock.
Since only 35% of people refused to administer a shock, probability of success is p = 0.35.
When an individual trial has only two possible outcomes, it is called a Bernoulli random variable.

A random variable X has a Bernoulli distribution with parameter p if

for 

P(X = 1) = p and P(X = 0) = 1 − p

0 < p < 1
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Geometric distribution

Dr. Smith wants to repeat Milgrams experiments but she only wants to sample people until she
�nds someone who will not in�ict a severe shock. What is the probability that she stops after the
�rst person?

the third person?

the tenth person?

P(1st person refuses) = 0.35

P(1stand2ndshock, 3rdrefuses) = × × = 0.652 × 0.35 ≈ 0.15
S

0.65

S

0.65

R

0.35
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Geometric distribution (cont.)

Geometric distribution describes the waiting time until a success for independent and identically
distributed (iid) Bernouilli random variables.

independence: outcomes of trials don’t affect each other
identical: the probability of success is the same for each trial

Geometric probabilities

If  represents probability of success,  represents probability of failure, and n represents
number of independent trials
p (1 − p)

P(success on the nth trial) = (1 − p)n−1p
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Expected value

How many people is Dr. Smith expected to test before �nding the �rst one that refuses to
administer the shock?

The expected value, or the mean, of a geometric distribution is de�ned as .

She is expected to test 2.86 people before �nding the �rst one that refuses to administer the
shock.

But how can she test a non-whole number of people?

1
p

μ = = = 2.86
1

p

1

0.35
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Expected value and its variability

Going back to Dr. Smith’s experiment:

Dr. Smith is expected to test 2.86 people before �nding the �rst one that refuses to administer
the shock, give or take 2.3 people.

These values only make sense in the context of repeating the experiment many many times.

μ =
1

p
σ = √ 1 − p

p2

σ = √ = √ = 2.3
1 − p

p2

1 − 0.35

0.352
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Milgram Part 2

Suppose we randomly select four individuals to participate in this experiment. What is the
probability that exactly 1 of them will refuse to administer the shock

Let’s call these people Allen (A), Brittany (B), Caroline (C), and Damian (D). Each one of the four
scenarios below will satisfy the condition of “exactly 1 of them refuses to administer the shock”:

The probability of exactly one 1 of 4 people refusing to administer the shock is the sum of all of
these probabilities.

0.0961 + 0.0961 + 0.0961 + 0.0961 = 4 × 0.0961 = 0.3844 30 / 35



Binomial distribution

The question from the prior slide asked for the probability of given number of successes, k, in a
given number of trials, n, (k = 1 success in n = 4 trials), and we calculated this probability as

Number of scenarios: there is a less tedious way to �gure this out, we’ll get to that shortly...

The Binomial distribution describes the probability of having exactly k successes in n
independent Bernouilli trials with probability of success p.

# of scenarios × P(single scenario)

P(single scenario) = pk(1 − p)(n−k)
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Choose Function

The choose function is useful for calculating the number of ways to choose k successes in n
trials.

For example, :

choose(9,2)

## [1] 36

(n

k
) =

n!

k!(n − k)!

( 9

2
) = = = = 36

9!

2!(9 − 2)!

9 × 8 × 7!

2 × 1 × 7!

72

2
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Binomial distribution

If p represents probability of success, (1 − p) represents probability of failure, n represents
number of independent trials, and k represents number of successes

P(k successes in n trials) = (n

k
) pk(1 − p)(n−k)
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Binomial distribution
n <- 4

p <- 0.35

barplot(dbinom(0:n, n, p), names.arg=0:n)

dbinom(1, 4, p)

## [1] 0.384475

https://shiny rit albany edu/stat/binomial/
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�. What was the most important thing
you learned during this class?

�. What important question remains
unanswered for you?

One Minute Paper

https://forms.gle/ETg8tW9YRHQJHjE28
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